

 CREC. Dept. of CSE Page 52

UNIT - 3

 CREC. Dept. of CSE Page 53

UNIT-3

THE DATABASE LANGUAGE SQL

Introduction to SQL:

What is SQL?

1. SQL is Structured Query Language, which is a computer language for storing, manipulating and

retrieving data stored in relational database.

2. SQL is the standard language for Relation Database System. All relational database management

systems like MySQL, MS Access, and Oracle, Sybase, Informix, postgres and SQL Server use

SQL as standard database language.

Why SQL?

3. Allows users to access data in relational database management systems.

4. Allows users to describe the data.

5. Allows users to define the data in database and manipulate that data.

6. Allows embedding within other languages using SQL modules, libraries & pre-compilers.

7. Allows users to create and drop databases and tables.

8. Allows users to create view, stored procedure, functions in a database.

9. Allows users to set permissions on tables, procedures and views

 CREC. Dept. of CSE Page 54

History:

10. 1970 -- Dr. E. F. "Ted" of IBM is known as the father of relational databases. He described a

relational model for databases.

11. 1974 -- Structured Query Language appeared.

12. 1978 -- IBM worked to develop Codd's ideas and released a product named System/R.

13. 1986 -- IBM developed the first prototype of relational database and standardized by ANSI. The

first relational database was released by Relational Software and its later becoming Oracle.

SQL Process:

14. When you are executing an SQL command for any RDBMS, the system determines the best way to

carry out your request and SQL engine figures out how to interpret the task.

15. There are various components included in the process. These components are Query Dispatcher,

Optimization Engines, Classic Query Engine and SQL Query Engine, etc. Classic query engine

handles all non-SQL queries, but SQL query engine won't handle logical files.

SQL Process:

 CREC. Dept. of CSE Page 55

SQL Commands:

The standard SQL commands to interact with relational databases are CREATE, SELECT, INSERT,

UPDATE, DELETE and DROP. These commands can be classified into groups based on their nature.

They are:

 DDL Commands

 DML Commands

 DCL Commands

 DRL/DQL Commands

 TCL Commands

Data Definition Language (DDL) Commands:

Command Description

CREATE Creates a new table, a view of a table, or other object in

 database

ALTER Modifies an existing database object, such as a table.

DROP Deletes an entire table, a view of a table or other object in the

 database.

TRUNCATE Truncates the table values without delete table structure

Data Manipulation Language (DML) Commands:

Command Description

INSERT Creates a record

UPDATE Modifies records

DELETE Deletes records

 CREC. Dept. of CSE Page 56

Data Control Language (DCL) Commands:

Command Description

GRANT Gives a privilege to user

REVOKE Takes back privileges granted from user

Data Query Language (DQL) Commands:

Command Description

SELECT Retrieves certain records from one or more

 tables

Transaction Control Language (TCL) Commands:

Command Description

commit Save work done

Save point Identify a point in a transaction to which we

 can later roll back.

Roll backs Restore database to original since the last

 Commit

What is Query?

• A query is a question.

• A query is formulated for a relation/table to retrieve some useful information from the table.

• Different query languages are used to frame queries.

Form of Basic SQL Query

• The basic form of an SQL query is as follows:

SELECT [DISTINCT] select-list (List of Attributes)

FROM from-list (Table (s) Name (s))

WHERE qualification (Condition)

• This SELECT command is used to retrieve the data from the database.

 CREC. Dept. of CSE Page 57

• For retrieving the data every query must have SELECT clause, which specifies what columns to be

selected.

• And FROM clause, which specifies the table’s names. The WHERE clause, specifies the selection

condition.

• SELECT: The SELECT list is list of column names of tables named in the FROM list.

Column names can be prefixed by a range variable.

• FROM: The FROM list in the FROM clause is a list of table names. A Table name can be

followed by a range variable. A range variable is particularly useful when the same table name

appears more than once in the from-list.

• WHERE: The qualification in the WHERE clause is a Boolean combination (i.e., an expression

using the logical connectives AND, OR, and NOT) of conditions of the form expression op

expression, where op is one of the comparison operators {<, <=, =, <>, >=,>}.

• An expression is a column name, a constant, or an (arithmetic or string) expression.

• DISTINCT: The DISTINCT keyword is used to display the unique tuple or eliminated the

duplicate tuple.

• This DISTINCT keyword is Optional.

DDL Commands:

• The following are the DDL commands. They are:

 Create

 Alter

 Truncate

 Drop

 CREC. Dept. of CSE Page 58

CREATE:

• The SQL CREATE TABLE statement is used to create a new table.

• Creating a basic table involves naming the table and defining its columns and each column's data

type.

Syntax:

• Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE table name (column1 datatype (size), column2 datatype (size), column3

datatype (size) ... columnN datatype (size), PRIMARY KEY (one or more columns));

Example:

SQL> create table customers (id number (10) not null, name varchar2 (20) not null, age number

(5) not null, address char (25), salary decimal (8, 2), primary key (id));

ALTER:

• SQL ALTER TABLE command is used to add, delete or modify columns in an existing table

Syntax:

• The basic syntax of ALTER TABLE to add a new column in an existing table is as follows:

ALTER TABLE table_name ADD column_name datatype;

EX: ALTER TABLE CUSTOMERS ADD phno number (12);

ii) The basic syntax of ALTER TABLE to DROP COLUMN in an existing table is as follows:

ALTER TABLE table_name DROP COLUMN column_name;

EX: ALTER TABLE CUSTOMERS DROP column phno;

• The basic syntax of ALTER TABLE to change the DATA TYPE of a column in a table is as

follows:

ALTER TABLE table_name MODIFY COLUMN column_name datatype;

Ex: ALTER TABLE customer MODIFY COLUMN phno number(12);

 CREC. Dept. of CSE Page 59

• The basic syntax of ALTER TABLE to add a NOT NULL constraint to a column in a table is as

follows:

ALTER TABLE table_name MODIFY column_name datatype NOT NULL;

Ex:

ALTER TABLE customers MODIFY phno number (12); NOT NULL;

• The basic syntax of ALTER TABLE to ADD PRIMARY KEY constraint to a table is as

follows:

ALTER TABLE table_name ADD PRIMARY KEY (column1, column2...);

Ex:

ALTER TABLE customer ADD PRIMARY KEY (id,phno);

TRUNCATE:

• SQL TRUNCATE TABLE command is used to delete complete data from an existing table.

Syntax:

The basic syntax of TRUNCATE TABLE is as follows:

TRUNCATE TABLE table name;

EX:

TRUNCATE TABLE student;

SELECT * FROM student;

Empty set (0.00 sec).

 CREC. Dept. of CSE Page 60

DROP:

SQL DROP TABLE statement is used to remove a table definition and all data, indexes, triggers,

constraints, and permission specifications for that table.

Syntax:

Basic syntax of DROP TABLE statement is as follows:

DROP TABLE table_name;

EX: DROP TABLE student;

DML Commands:

The following are the DML commands. They are:

• Insert

• Update

• Delete

INSERT:

 SQL INSERT INTO Statement is used to add new rows of data to a table in the database.

 There are two basic syntaxes of INSERT INTO statement as follows:

Syntax1:

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)] VALUES

(value1, value2, value3,...valueN);

• Here, column1, column2...columnN are the names of the columns in the table into which you

want to insert data.

 CREC. Dept. of CSE Page 61

EX:

insert into customers (id,name,age,address,salary) values (1, 'ramesh', 32, 'ahmedabad', 2000);

insert into customers (id,name,age,address,salary) values (2, 'khilan', 25, 'delhi', 1500.00);

2 rows inserted.

Syntax2:

INSERT INTO TABLE_NAME VALUES (value1, value2, value3...valueN);

Ex:

insert into customers values (1, 'ramesh', 32, 'ahmedabad', 2000.00);

UPDATE:

• SQL UPDATE Query is used to modify the existing records in a table.

• We can use WHERE clause with UPDATE query to update selected rows, otherwise all the rows

would be affected.

Syntax:

• The basic syntax of UPDATE query with WHERE clause is as follows:

UPDATE table_name SET column1 = value1, column2 = value2...., columnN = valueN

WHERE [condition];

EX:

• UPDATE CUSTOMERS SET ADDRESS = 'Pune' WHERE ID = 6;

• UPDATE CUSTOMERS SET ADDRESS = 'Pune', SALARY = 1000.00;

DELETE:

SQL DELETE Query is used to delete the existing records from a table.

You can use WHERE clause with DELETE query to delete selected rows, otherwise all the

records would be deleted.

 CREC. Dept. of CSE Page 62

Syntax:

The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table_name WHERE [condition];

Ex: DELETE FROM CUSTOMERS WHERE ID = 6;

If you want to DELETE all the records from CUSTOMERS table, you do not need to use WHERE

clause and DELETE query would be as follows:

DELETE FROM CUSTOMERS;

DRL/DQL Command:

The select command is comes under DRL/DQL.

SELECT:

SELECT Statement is used to fetch the data from a database table which returns data in the form

of result table. These result tables are called result-sets.

Syntax1:

The Following Syntax is used to retrieve specific attributes from the table is as follows:

SELECT column1, column2, columnN FROM table_name;

Here, column1, column2...are the fields of a table whose values you want to fetch.

The Following Syntax is used to retrieve all the attributes from the table is as follows:

SELECT * FROM table_name;

Ex: Select * from student;

Distinct:

 SQL DISTINCT keyword is used in conjunction with SELECT statement to eliminate all the

 CREC. Dept. of CSE Page 63

duplicate records and fetching only unique records.

 There may be a situation when you have multiple duplicate records in a table. While fetching

such records, it makes more sense to fetch only unique records instead of fetching duplicate

records.

Syntax:

 The basic syntax of DISTINCT keyword to eliminate duplicate records is as follows:

SELECT DISTINCT column1, column2,.....columnN FROM table_name WHERE

[condition];

Ex: SELECT DISTINCT SALARY FROM CUSTOMERS ORDER BY SALARY;

Queries involving more than one relation (or) Full Relation Operations :

 The following set operations are used to write a query to combine more than one relation. They

are:

 Union

 Intersect

 Except

UNION:

 SQL UNION clause/operator is used to combine the results of two or more SELECT statements

without returning any duplicate rows.

 To use UNION, each SELECT must have the same number of columns selected, the same number

of column expressions, the same data type, and have them in the same order, but they do not have

to be the same length.

Syntax:

 The basic syntax of UNION is as follows:

SELECT column1 [, column2] FROM table1 [, table2] [WHERE condition]

UNION

 CREC. Dept. of CSE Page 64

SELECT column1 [, column2] FROM table1 [, table2] [WHERE condition]

EX:

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON

CUSTOMERS.ID = ORDERS.CUSTOMER_ID

UNION

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

UNION ALL Clause:

 The UNION ALL operator is used to combine the results of two SELECT statements

including duplicate rows.

 The same rules that apply to UNION apply to the UNION ALL operator.

Syntax:

• The basic syntax of UNION ALL is as follows:

SELECT column1 [, column2] FROM table1 [, table2] [WHERE condition]

UNION ALL

SELECT column1 [, column2] FROM table1 [, table2] [WHERE condition]

EX:

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON

CUSTOMERS.ID = ORDERS.CUSTOMER_ID

UNION ALL

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS ON

CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

 CREC. Dept. of CSE Page 65

INTERSECT:

• The SQL INTERSECT clause/operator is used to combine two SELECT statements, but returns

rows only from the first SELECT statement that are identical to a row in the second SELECT

statement.

• This means INTERSECT returns only common rows returned by the two SELECT statements.

• Just as with the UNION operator, the same rules apply when using the INTERSECT operator.

MySQL does not support INTERSECT operator

Syntax:

The basic syntax of INTERSECT is as follows:

SELECT column1 [, column2] FROM table1 [, table2] [WHERE condition]

INTERSECT

SELECT column1 [, column2] FROM table1 [, table2] [WHERE condition];

Ex:

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID

INTERSECT

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

EXCEPT:

• The SQL EXCEPT clause/operator is used to combine two SELECT statements and returns rows

from the first SELECT statement that are not returned by the second SELECT statement.

• This means EXCEPT returns only rows, which are not available in second SELECT statement.

• Just as with the UNION operator, the same rules apply when using the EXCEPT operator.

• MySQL does not support EXCEPT operator.

 CREC. Dept. of CSE Page 66

Syntax:

The basic syntax of EXCEPT is as follows:

SELECT column1 [, column2] FROM table1 [, table2] [WHERE condition]

EXCEPT

SELECT column1 [, column2] FROM table1 [, table2] [WHERE condition];

EX:

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID

EXCEPT

SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

SQL Operators

What is an Operator in SQL?

 An operator is a reserved word or a character used primarily in an SQL statement's WHERE

clause to perform operation(s), such as comparisons and arithmetic operations.

 Operators are used to specify conditions in an SQL statement and to serve as conjunctions for

multiple conditions in a statement.

1. Arithmetic operators

2. Comparison operators

3. Logical operators

4. Operators used to negate conditions

 CREC. Dept. of CSE Page 67

SQL Arithmetic Operators:

Operator Description Example

+ Addition - Adds values on either side of the operator a + b will give 30

- Subtraction - Subtracts right hand operand from left hand a - b will give -10

 operand

*

Multiplication - Multiplies values on either side of

the a * b will give 200

 operator

/ Division - Divides left hand operand by right hand operand b / a will give 2

% Modulus - Divides left hand operand by right hand operand b % a will give 0

 and returns remainder

SQL Comparison Operators:

Operator Description Example

= Checks if the values of two operands are equal or not, if (a = b) is not true.

 yes then condition becomes true.

!= Checks if the values of two operands are equal or not, if (a != b) is true.

 values are not equal then condition becomes true.

<> Checks if the values of two operands are equal or not, if (a <> b) is true.

 values are not equal then condition becomes true.

> Checks if the value of left operand is greater than the value (a > b) is not true.

 of right operand, if yes then condition becomes true.

< Checks if the value of left operand is less than the value of (a < b) is true.

 right operand, if yes then condition becomes true.

>= Checks if the value of left operand is greater than or equal (a >= b) is not true

 to the value of right operand, if yes then condition becomes

 CREC. Dept. of CSE Page 68

 true.

<= Checks if the value of left operand is less than or equal (a <= b) is

to the value of right operand, if yes then

condition true.

 becomes true.

!< Checks if the value of left operand is not less than the (a !< b) is

 value of right operand, if yes then condition becomes false.

 true.

!> Checks if the value of left operand is not greater than a !> b) is

 the value of right operand, if yes then condition true.

 becomes true.

• The following are example illustrate the relational operators usage on tables:

Ex:

• SELECT * FROM CUSTOMERS WHERE SALARY > 5000;

• SELECT * FROM CUSTOMERS WHERE SALARY = 2000;

• SELECT * FROM CUSTOMERS WHERE SALARY != 2000;

• SELECT * FROM CUSTOMERS WHERE SALARY >= 6500;

SQL Logical Operators:

Operator Description

AND

The AND operator allows the existence of multiple conditions in an

SQL

 statement's WHERE clause

OR The OR operator is used to combine multiple conditions in an SQL statement's

 WHERE clause.

NOT The NOT operator reverses the meaning of the logical operator with which it is

used. Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a

negatation operator

 CREC. Dept. of CSE Page 69

• SQL AND and OR operators are used to combine multiple conditions to narrow data in an

SQL statement. These two operators are called conjunctive operators.

• These operators provide a means to make multiple comparisons with different operators in

the same SQL statement.

AND Operator:

• The AND operator allows the existence of multiple conditions in an SQL statement's

WHERE clause.

Syntax:

• The basic syntax of AND operator with WHERE clause is as follows:

SELECT column1, column2, columnN FROM table_name WHERE [condition1]

AND [condition2]...AND [conditionN];

Ex:

SELECT * FROM CUSTOMERS WHERE AGE >= 25 AND SALARY >= 6500;

OR Operator:

• The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.

Syntax:

• The basic syntax of OR operator with WHERE clause is as follows:

SELECT column1, column2, columnN FROM table_name WHERE [condition1] OR

[condition2]...OR [conditionN];

Ex:

SELECT * FROM CUSTOMERS WHERE AGE >= 25 OR SALARY >= 6500;

NOT Operator:

• The NOT operator reverses the meaning of the logical operator with which it is used. Eg: NOT

EXISTS, NOT BETWEEN, NOT IN, etc. This is a negate operator.

 CREC. Dept. of CSE Page 70

Syntax:

SELECT column1, column2, … column FROM table_name WHERENOT [condition];

EX:

SELECT * FROM CUSTOMERS WHERE AGE IS NOT NULL;

Special Operators in SQL:

Operator

BETWE

EN

EXIST

S

IN

LIKE

IS

NULL

UNIQU

E

Description

The BETWEEN operator is used to search for values that are within a set of

values, given the minimum value and the maximum value.

The EXISTS operator is used to search for the presence of a row in a

specified table that meets certain criteria.

The IN operator is used to compare a value to a list of literal values that

have been specified.

The LIKE operator is used to compare a value to similar values using

wildcard operators.

The NULL operator is used to compare a value with a NULL value.

The UNIQUE operator searches every row of a specified table for

uniqueness (no duplicates).

LIKE Operator:

 SQL LIKE clause is used to compare a value to similar values using wildcard operators. There are

two wildcards used in conjunction with the LIKE operator:

1. The percent sign (%)

2. The underscore (_)

 The percent sign represents zero, one, or multiple characters.

 The underscore represents a single number or character.

 CREC. Dept. of CSE Page 71

 The symbols can be used in combinations.

Syntax:

 The basic syntax of % and _ is as follows:

SELECT FROM table_name

WHERE column LIKE 'XXXX%'

or

SELECT FROM table_name

WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name

WHERE column LIKE 'XXXX_'

 or

SELECT FROM table_name WHERE column LIKE '_XXXX'

 or

SELECT FROM table_name WHERE column LIKE '_XXXX_

 CREC. Dept. of CSE Page 72

Ex:

Statement

WHERE SALARY LIKE 's%'

WHERE SALARY LIKE '%sad%'

WHERE SALARY LIKE '_00%'

WHERE SALARY LIKE '2_%_%'

WHERE SALARY LIKE '%r'

WHERE SALARY LIKE '_2%3'

WHERE SALARY LIKE '2___3'

Description

Finds any values that start with s

Finds any values that have sad in any

position

Finds any values that have 00 in the

second and third positions

Finds any values that start with 2 and

are at least 3 characters in length

Finds any values that end with r

Finds any values that have a 2 in the

second position and end with a 3

Finds any values in a five-digit number

that start with 2 and end with

 CREC. Dept. of CSE Page 73

BETWEEN Operator

The BETWEEN operator is used to select values within a range.

 Syntax:

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

EX: SELECT * FROM Products WHERE Price BETWEEN 10 AND 20;

NOT BETWEEN Operator:

SELECT * FROM Products WHERE Price NOT BETWEEN 10 AND 20;

IN Operator:

 The IN operator allows you to specify multiple values in a WHERE clause.

Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1,value2,...);

Ex: SELECT * FROM Customers WHERE salary IN (5000, 10000);

SQL Joins:

• SQL Joins clause is used to combine records from two or more tables in a database.

• A JOIN is a means for combining fields from two tables by using values common to each.

• Consider the following two tables, CUSTOMERS and ORDERS tables are as follows:

 CREC. Dept. of CSE Page 74

CUSTOMERS TABLE

| ID | NAME | AGE | ADDRESS |

SALARY | | 1 | Ramesh | 32 |

Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi |

1500.00 | | 3 | kaushik | 23 |

Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai |

6500.00 | | 5 | Hardik | 27 |

Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

ORDERS TABLE

|OID | DATE | CUSTOMER_ID |

AMOUNT | | 102 | 2009-10-08 00:00:00 |

3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 |

1500 | | 101 | 2009-11-20 00:00:00 | 2 |

1560 | | 103 | 2008-05-20 00:00:00 | 4 |

2060 |

Ex:

SELECT ID, NAME, AGE, AMOUNT FROM CUSTOMERS,

ORDERS WHERE CUSTOMERS.ID =

ORDERS.CUSTOMER_ID;

This would produce the following

result: | ID | NAME | AGE |

AMOUNT |

| 3 | kaushik | 23 |

3000 | | 3 | kaushik

| 23 | 1500 | | 2 |

Khilan | 25 | 1560

 CREC. Dept. of CSE Page 75

NOTE:

• Join is performed in the WHERE clause. Several operators can be used to join tables, such as

=, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be used to join tables.

However, the most common operator is the equal symbol.

SQL Join Types:

• There are different types of joins available in SQL: They are:

• INNER JOIN

• OUTER JOIN

• SELF JOIN

• CARTESIAN JOIN

INNER JOIN:

 The most frequently used and important of the joins is the INNER JOIN. They are also

referred to as an EQUIJOIN.

 The INNER JOIN creates a new result table by combining column values of two tables

(table1 and table2) based upon the join-predicate.

 The query compares each row of table1 with each row of table2 to find all pairs of rows

which satisfy the join-predicate.

 When the join-predicate is satisfied, column values for each matched pair of rows of A and B

are combined into a result row.

Syntax:

 The basic syntax of INNER JOIN is as follows:

SELECT table1.column1, table2.column2... FROM table1 INNER JOIN

table2 ON table1.common_filed = table2.common_field;

Ex: SELECT ID, NAME, AMOUNT, DATE FROM

CUSTOMERS INNER JOIN

ORDERS CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

OUTER JOIN:

 The Outer join can be classified into 3 types. They are:

 Left Outer Join\

 Right Outer Join

 Full Outer Join

 CREC. Dept. of CSE Page 76

Left Outer Join:

• The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in

the right table.

• This means that a left join returns all the values from the left table, plus matched values from

the right table or NULL in case of no matching join predicate.

Syntax:

• The basic syntax of LEFT JOIN is as follows:

SELECT table1.column1, table2.column2... FROM table1 LEFT JOIN

table2 ON table1.common_filed = table2.common_field;

EX: SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS

LEFT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

RIGHT JOIN:

• The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches in

the left table.

• This means that a right join returns all the values from the right table, plus matched values

from the left table or NULL in case of no matching join predicate.

Syntax:

• The basic syntax of RIGHT JOIN is as follows:

SELECT table1.column1, table2.column2... FROM table1 RIGHT JOIN

table2 ON table1.common_filed = table2.common_field;

Ex: SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS

RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

FULL JOIN:

• The SQL FULL JOIN combines the results of both left and right outer joins.

• The joined table will contain all records from both tables, and fill in NULLs for missing

matches on either side.

 CREC. Dept. of CSE Page 77

Syntax:

• The basic syntax of FULL JOIN is as follows:

SELECT table1.column1, table2.column2... FROM table1 FULL JOIN

table2 ON table1.common_filed = table2.common_field;

Ex: SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS FULL JOIN

ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

SELF JOIN:

• The SQL SELF JOIN is used to join a table to it as if the table were two tables,

temporarily renaming at least one table in the SQL statement.

Syntax:

• The basic syntax of SELF JOIN is as follows:

SELECT a.column_name, b.column_name...FROM table1 a, table1 b

WHERE a.common_filed = b.common_field;

Ex:

SELECT a.ID, b.NAME, a.SALARY FROM CUSTOMERS a,

CUSTOMERS b WHERE a.SALARY < b.SALARY;

CARTESIAN JOIN:

• The CARTESIAN JOIN or CROSS JOIN returns the cartesian product of the sets of records

from the two or more joined tables.

• Thus, it equates to an inner join where the join-condition always evaluates to True or where

the join-condition is absent from the statement.

Syntax:

• The basic syntax of CROSS JOIN is as follows:

SELECT table1.column1, table2.column2... FROM table1, table2 [,

table3]; Ex: SELECT ID, NAME, AMOUNT, DATE FROM

CUSTOMERS, ORDERS;

VIEWS IN SQL:

• A view is nothing more than a SQL statement that is stored in the database with an

associated name.

 CREC. Dept. of CSE Page 78

• A view is actually a composition of a table in the form of a predefined SQL query.

• A view can contain all rows of a table or select rows from a table.

• A view can be created from one or many tables which depends on the written SQL

query to create a view.

• Views, which are kind of virtual tables, allow users to do the following:

• Structure data in a way that users or classes of users find natural or intuitive.

• Restrict access to the data such that a user can see and (sometimes) modify exactly

what they need and no more.

• Summarize data from various tables which can be used to generate reports.

Advantages of views:

• Views provide data security

• Different users can view same data from different perspective in different ways

at the same time.

• Views cal also be used to include extra/additional information

Creating Views:

• Database views are created using the CREATE VIEW statement. Views can be created

from a single table, multiple tables, or another view.

• To create a view, a user must have the appropriate system privilege according to the

specific implementation.

• The basic CREATE VIEW syntax is as follows:

CREATE VIEW view_name AS SELECT column1, column2..... FROM

table_name WHERE [condition];

Ex: CREATE VIEW CUSTOMERS_VIEW AS SELECT name, age FROM

CUSTOMERS;

You can query CUSTOMERS_VIEW in similar way as you query an actual

table. Following is the example:

SELECT * FROM CUSTOMERS_VIEW;

 CREC. Dept. of CSE Page 79

Updating a View:

A view can be updated under certain conditions: TUTORIALS POINT Simply

Easy Learning

• The SELECT clause may not contain the keyword DISTINCT.

• The SELECT clause may not contain summary functions.

• The SELECT clause may not contain set functions.

• The SELECT clause may not contain set operators.

• The SELECT clause may not contain an ORDER BY clause.

• The FROM clause may not contain multiple tables.

• The WHERE clause may not contain sub queries.

• The query may not contain GROUP BY or HAVING.

NOTE:

So if a view satisfies all the above mentioned rules then you can update a

view. Following is an example to update the age of Ramesh:

Ex: UPDATE CUSTOMERS_VIEW SET AGE = 35 WHERE name='Ramesh';

Deleting Rows into a View:

• Rows of data can be deleted from a view. The same rules that apply to the UPDATE and

INSERT commands apply to the DELETE command.

• Following is an example to delete a record having AGE= 22.

delete from customers_view where age = 22;

Dropping Views:

• Obviously, where you have a view, you need a way to drop the view if it is no longer needed.

• The syntax is very simple as given below:

DROP VIEW view_name;

 CREC. Dept. of CSE Page 80

• Following is an example to drop CUSTOMERS_VIEW from CUSTOMERS table:

DROP VIEW CUSTOMERS_VIEW;

GROUP BY:

 SQL GROUP BY clause is used in collaboration with the SELECT statement to arrange

identical data into groups.

 The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the

ORDER BY clause.

Syntax:

 The GROUP BY clause must follow the conditions in the WHERE clause and must

precede the ORDER BY clause if one is used.

SELECT column1,

column2 FROM

table_name WHERE

[conditions]

GROUP BY column1,

column2 ORDER BY

column1, column2; Ex:

select name, sum(salary) from customers group by name;

ORDER BY:

 SQL ORDER BY clause is used to sort the data in ascending or descending order, based on

one or more columns.

 Some database sorts query results in ascending order by default.

Syntax:

 The basic syntax of ORDER BY clause is as follows:

SELECT

column-list

FROM

table_name

 CREC. Dept. of CSE Page 81

[WHERE

condition]

[ORDER BY column1, column2, .. columnN] [ASC |

DESC]; Ex:

1. select * from customers order by name, salary;

2. select * from customers order by name desc;

HAVING Clause:

 The HAVING clause enables you to specify conditions that filter which group results appear

in the final results.

 The WHERE clause places conditions on the selected columns, whereas the HAVING clause

places conditions on groups created by the GROUP BY clause.

Syntax:

SELECT column1,

column2 FROM

table1, table2 WHERE

[conditions]

GROUP BY column1,

column2 HAVING

[conditions] ORDER BY

column1, column2; Ex:

select id, name, age, address, salary from customers group by age having count(age) >= 2;

Aggregate Functions:

 SQL aggregate functions return a single value, calculated from values in a column.

 Useful aggregate functions:

 AVG() - Returns the average value

 COUNT() - Returns the number of rows

 MAX() - Returns the largest value

 MIN() - Returns the smallest value

 SUM() - Returns the sum

AVG () Function

The AVG () function returns the average value of a numeric column.

 CREC. Dept. of CSE Page 82

AVG () Syntax

SELECT AVG (column_name) FROM

table_name; Ex:

SELECT AVG (Price) FROM Products;

COUNT () Function

COUNT aggregate function is used to count the number of rows in a database table.

COUNT () Syntax:

SELECT COUNT (column_name) FROM

table_name; Ex:

SELECT COUNT (Price) FROM Products;

MAX () Function

The SQL MAX aggregate function allows us to select the highest (maximum) value for a

certain column.

MAX () Syntax:

SELECT MAX (column_name) FROM

table_name; EX:

SELECT MAX (SALARY) FROM EMP;

SQL MIN Function:

SQL MIN function is used to find out the record with minimum value among a record set.

MIN () Syntax:

SELECT MIN (column_name) FROM

table_name; EX:

SELECT MIN (SALARY) FROM EMP;

 CREC. Dept. of CSE Page 83

SQL SUM Function SQL:

SUM function is used to find out the sum of a field in various records.

SUM () Syntax:

SELECT COUNT (column_name) FROM

table_name; EX:

SELECT COUNT (EID) FROM EMP;

PRIMARY Key:

 A primary key is a field in a table which uniquely identifies each row/record in a database

table.

Properties Primary key:

•A primary keys must contain:

1) Unique values

2) NOT NULL values.

 A table can have only one primary key, which may consist of single or multiple fields.

 If a table has a primary key defined on any field(s), then you cannot have two records having

the same value of that field(s).

FOREIGN Key:

 A foreign key is a key used to link two tables together.

 This is sometimes called a referencing key.

 Foreign Key is a column or a combination of columns whose values match a Primary Key

in a different table.

 The relationship between 2 tables matches the Primary Key in one of the tables with a

Foreign Key in the second table.

 CREC. Dept. of CSE Page 84

Sub-Queries/Nested Queries in SQL: Introduction to Nested Queries :

 One of the most powerful features of SQL is nested queries.

 A nested query is a query that has another query embedded within it; the embedded query is

called a sub query.

 When writing a query, we sometimes need to express a condition that refers to a table that

must itself be computed.

 A subquery typically appears within the WHERE clause of a query. Subqueries can

sometimes appear in the FROM clause or the HAVING clause.

 Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements

along with the operators like =, <, >, >=, <=, IN, BETWEEN etc.

 There are a few rules that subqueries must follow:

1. Subqueries must be enclosed within parentheses.

2. A subquery can have only one column in the SELECT clause, unless multiple columns are

in the main query for the subquery to compare its selected columns.

3. A subquery cannot be immediately enclosed in a set function.

Subqueries with the SELECT Statement:

Subqueries are most frequently used with the SELECT statement. The basic syntax is as

follows:

SELECT column_name

[, column_name] FROM table1

[, table2]

WHERE column_name OPERATOR

(SELECT column_name

[, column_name] FROM table1 [,

table2]

[WHERE])

 CREC. Dept. of CSE Page 85

Ex: select *from customers where id in (select id from customers where salary >4500);

Subqueries with the INSERT Statement:

 Sub queries also can be used with INSERT statements.

 The INSERT statement uses the data returned from the subquery to insert into another table.

 The selected data in the subquery can be modified with any of the character, date or

number functions.

Syntax

INSERT INTO table_name [(column1

[, column2])] SELECT

[*|column1 [, column2]

FROM table1 [, table2]

[WHERE VALUE OPERATOR]

Ex:

insert into customers_bkp select * from customers where id in (select id from customers) ;

Subqueries with the UPDATE Statement:

 The subquery can be used in conjunction with the UPDATE statement.

 Either single or multiple columns in a table can be updated when using a subquery

with the UPDATE statement.

Syntax:

UPDATE table SET column_name = new_value [WHERE OPERATOR

[VALUE] (SELECTCOLUMN_NAME FROM TABLE_NAME) [WHERE)];

EX:

UPDATE CUSTOMERS SET SALARY = SALARY * 0.25 WHERE AGE IN (SELECT AGE

FROM CUSTOMERS_BKP WHERE AGE >= 27);

 CREC. Dept. of CSE Page 86

Transactions:

A transaction is a unit of program execution that accesses and possibly updates various data

items.

(or)

A transaction is an execution of a user program and is seen by the DBMS as a series or list of

actions i.e., the actions that can be executed by a transaction includes the reading and writing of

database.

Transaction Operations:

Access to the database is accomplished in a transaction by the following two operations,

1) read(X) : Performs the reading operation of data item X from the database.

2) write(X) : Performs the writing operation of data item X to the database.

Example:

 Let T1 be a transaction that transfers $50 from account A to account B. This transaction

can be illustrated as follows,

 T1 : read(A);

 A := A – 50;

 write(A);

 read(B);

 B := B + 50;

 write(B);

Transaction Concept:

 The concept of transaction is the foundation for concurrent execution of transaction in a DBMS

and recovery from system failure in a DBMS.

 A user writes data access/updates programs in terms of the high-level query language supported

by the DBMS.

 To understand how the DBMS handles such requests, with respect to concurrency control and

recovery, it is convenient to regard an execution of a user program or transaction, as a series of

reads and writes of database objects.

- To read a database object, it is first brought in to main memory from disk and then its value is

copied into a program. This is done by read operation.

- To write a database object, in-memory, copy of the object is first modified and then written to

disk. This is done by the write operation.

Properties of Transaction (ACID):

 There are four important properties of transaction that a DBMS must ensure to maintain

data in concurrent access of database and recovery from system failure in DBMS.

The four properties of transactions are,

